y=sin{tan−1{1−x1+x}}Letθ=tan−1x→(i)y=sin[tan−1{tanπ4−tanθ1+tanπ4×tanθ}]y=sin[tan−1{tan(π4−θ)}]y=sin(π4−θ)diff.w.r.tθdydθ=−cos(π4−θ).(1)→(ii)diff.equation(i)w.r.tθdxdθ=sec2θ→(iii)From(ii),(iii)dydx=−cos(π4−θ)sec2θ=−{cosπ4.cosθ+sinπ4.sinθ1+tan2θ}dydx=−1√2[cosθ+sinθ1+x2]=−1√2⎡⎣1√x2+1+x√x2+11+x2⎤⎦=−1√2[x+1(√x2+1(1+x2))]