wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=sin{tan1[1x1+x]}find
dydx

Open in App
Solution

y=sin{tan1{1x1+x}}Letθ=tan1x(i)y=sin[tan1{tanπ4tanθ1+tanπ4×tanθ}]y=sin[tan1{tan(π4θ)}]y=sin(π4θ)diff.w.r.tθdydθ=cos(π4θ).(1)(ii)diff.equation(i)w.r.tθdxdθ=sec2θ(iii)From(ii),(iii)dydx=cos(π4θ)sec2θ={cosπ4.cosθ+sinπ4.sinθ1+tan2θ}dydx=12[cosθ+sinθ1+x2]=121x2+1+xx2+11+x2=12[x+1(x2+1(1+x2))]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon