wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

Open in App
Solution

Given:
y sin ϕ = x sin (2θ + ϕ)

yx=sin2θ+ϕsinϕApplying componendo and dividendo:y-xy+x=sin2θ+ϕ - sinϕsin2θ+ϕ + sinϕy-xy+x=2sin2θ+ϕ-ϕ2cos2θ+ϕ+ϕ22sin2θ+ϕ+ϕ2cos2θ+ϕ-ϕ2y-xy+x=2sin θ cosθ+ϕ2sinθ+ϕ cos θy-xy+x=sin θ cosθ+ϕsinθ+ϕ cos θy-xy+x=cot θ+ϕcot θy-x cotθ = y+x cotθ+ϕ

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon