The correct option is
A 0The given information is:
y=sinpxOn successive differentiation we get y1, y2 and other terms. They are y1=pcospx
y2=−p2sinpx
y3=−p3cospx
y4=p4sinpx
y5=p5cospx
y6=−p6sinpx
y7=−p7cospx
y8=p8sinpx
Substituting these values in the determinant we get,
∣∣
∣∣yy1y2y3y4y5y6y7y8∣∣
∣∣ = ∣∣
∣
∣∣sinpxpcospx−p2sinpx−p3cospxp4sinpxp5cospx−p6sinpx−p7cospxp8sinpx∣∣
∣
∣∣
Now using the property of determinants we take p3 common from the second row and −p6 from the third row we get,
∣∣
∣∣yy1y2y3y4y5y6y7y8∣∣
∣∣ = −p9∣∣
∣
∣∣sinpxpcospx−p2sinpx−cospxpsinpxp2cospxsinpxpcospx−p2sinpx∣∣
∣
∣∣
Using the property of determinants, we know if two rows or columns of a determinant are equal, then its value is 0. Here row no. 1 and 3 are qual and hence the value of this determinant is 0 i.e.
∣∣
∣∣yy1y2y3y4y5y6y7y8∣∣
∣∣ = 0