wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=sin(sin x+cos x).Find dydx

Open in App
Solution

Putting (sin x+cos x)=t and (sin x+cos x)=t=u,we get

y=sin u,u=t and t=(sin x+cos x).

dydu=cos u,dudt=12t1/2=12t

and dtdx=(cos xsin x.)

So, dydx=(dydu×dudt×dtdx)=cos u2t.(cos xsin x)

=cos t2t.(cos xsin x) [u=t]

=cos(sin x+cos x)(cos xsin x)2sin x+cos x [t=(sin x+cos x)]


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon