We are given that y=(sinx)logx+xsinx
We have to find dydx,
let y1=(sinx)logx & y2=xsinx
dy1dx+dy2dx=dydx
now, we have y1=(sinx)logx
logy1=(logx)(log(sinx))
1y1dy1dx=1x(log(sinx))+logx(sinx)(cosx)
dy1dx=y1[log(sinx)x+(logx)cotx]
now, y2=xsinx⇒logy2=(sinx)(logx)
1y2dy2dx=sinxx+(cosx)(logx)
dy2dx=y2[sinxx+(logx)(cosx)]
dydx=dy1dx+dy2dx
dydx=(sinx)logx[log(sinx)x+(logx)(cotx)]+xsinx[sinxx+(logx)(cosx)]