If y=(sinx)tanx, then dydxis equal to
sinxtanx(1+sec2xlogsinx)
tanx(sinx)tanx-1cosx
sinxcosxsec2xlogsinx
tanx(sinx)tanx-1
Explanation for the correct option:
y=(sinx)tanx
Taking log both sides:
logy=logsinxtanx⇒logy=tanxlog(sinx)
Using Product Rule, Differentiating with respect to x both sides:
1ydydx=sec2x×log(sinx)+tanx×1sinx×cosx⇒1ydydx=sec2xlog(sinx)+tanx×cotx⇒1ydydx=sec2xlog(sinx)+1⇒dydx=y(1+sec2xlog(sinx))⇒dydx=sinxtanx(1+sec2xlogsinx)
Hence, Option (A) is the correct answer.
If dx+dy=(x+y)(dx-dy), then log(x+y) is equal to