If y=sin(xx) then dydx=
We have,
y=sinxx
On differentiating both sides w.r.t x, we get
dydx=ddx(sinxx)
dydx=cos(xx)ddx(xx)
dydx=cos(xx)(xx)ddx(xlnx)
dydx=(xx)cos(xx)(lnx×1+x×1x)
dydx=(xx)cos(xx)(lnx+1)
Hence, this is the answer.