The correct option is B 26−π6[6log2−√3x]
Given y=|sinx||x|
In the neighbourhood of −π6,|x| and |sinx| both are negative
i.e., y=(−sinx)−x
Taking log on both sides, we get
logy=−xlog(−sinx)
⇒1ydydx=(−x)1−sinx(−cosx)+log(−sinx)(−1)
=−x⋅cotx−log(−sinx)
=−[xcotx+log(−sinx)]
⇒dydx=−y[xcotx+log(−sinx)]
Therefore, (dydx)x=−π6=(2)−π6[6log2−√3π]6.