wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=(sinx)x+(x)sinx then find dydx

Open in App
Solution

y=(sinx)x+xsinx
Let
u=(sinx)x and v=xsinx and
Now,
u=(sinx)x
Taking log both sides, we have
logu=xlog(sinx)
1ududx=log(sinx)1+x(1sinxcosx)
dudx=u(log(sinx)+xcosxsinx)
dudx=(sinx)x(log(sinx)+xcotx)
Similarly,
v=xsinx
Taking log both sides, we get
logv=sinxlogx
Differentiating above equation w.r.t. x, we have
1vdvdx=sinx(1x)+logx(cosx)
dvdx=v(sinxx+cosxlogx)
dvdx=xsinx(sinxx+cosxlogx)
Therefore,
dydx=dudx+dvdx
dydx=(sinx)x(log(sinx)+xcotx)+xsinx(sinxx+cosxlogx)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon