If y=√(a−x)(x−b)−(a−b)tan−1√a−xx−b, then dydx is equal to
A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
√a−xx−b
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
√(a−x)(x−b)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1√(a−x)(b−x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B√a−xx−b Given : y=√(a−x)(x−b)−(a−b)tan−1√a−xx−b
Let x=acos2θ+bsin2θ∴a−x=a−acos2θ−bsin2θ=(a−b)sin2θ
and x−b=acos2θ+bsin2θ−b=(a−b)cos2θ∴y=(a−b)sinθcosθ−(a−b)tan−1(tanθ)=a−b2sin2θ−(a−b)θ∴dydx=dydθdxdθ=(a−b)cos2θ−(a−b)(b−a)sin2θ=1−cos2θsin2θ=tanθ=√a−xx−b