The correct option is A √a−xx−b
Given, y=√(a−x)(x−b)−(a−b)tan−1√a−xx−bLet u=(a−x)(x−b),√=√a−xx−b⇒ y=√u−(a−b)tan−1vNow, differentiating wrt x⇒ dydx=ddx(√u)−(a−b)ddxtan−1v=d(√u)du.dudx−(a−b)dtan−1vdv.dvdx [chain rule]=12√u.dudx−(a−b)11+v2.dvdx......(1)dudx=ddx(a−x)(x−b)=ddx(ax−av−x2+bx)=a−2x+bdvdx=ddx(√a−xx−b)=12√a−xx−b×(x−b)(−1)−(a−x)(1)(x−b)2 [quotent rule]=√x−b2√a−x×(b−a)(x−b)2substituting in (1)dydx=12√(a−x)(x−b)×(a−2x+b)−(a−b)11+a−xx−b×√x−b√b−x×(b−a)(x−b)2=a−2x+b2√(a−x)(x−b)−(ab)(xb)(a−b)×√x−b2√a−x(b−a)(x−b)2=a−2x+b+a−b2√(a−x)(x−b)=2(a−x)2√(a−x)(x−b)⇒dydx=√a−xx−boption A is corect