If y=√(a−x)(x−b)−(a−b)tan−1√(a−xx−b), then dydx is equal to
A
√(a−x)(x−b)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1√(a−x)(x−b)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
√(a−xx−b)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
√(x−ba−x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C√(a−xx−b) Let x=acos2θ+bsin2θ ∴a−x=(a−b)sin2θ,x−b=(a−b)cos2θ∴y=(a+b)sinθcosθ−(a−b)θ=(a−b)sin2θ2−(a−b)θ⇒dydθ=(a−b)cos2θ−(a−b)=−(a−b)2sin2θ=−2(a−b)sin2θ and dxdθ=(b−a)sin2θ∴dydx=−2(a−b)sin2θ(b−a)sin2θ=tanθ=√(a−xx−b)