To find: Minimum positive value of p+q+r
y=√cosx+√cosx+√cosx+....
⇒y=√cosx+y
⇒y2−y=cosx
Differentiating we get
⇒2yy′−y′=−sinx
⇒y′(2y−1)=−sinx
⇒y′=−sinx2y−1
⇒dydx=sinx1−2y
So p=1,q=1,r=−2
So p+q+r=0