wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=cosx+cosx+cosx+to , then dydx=psinxq+ry, p,q,rN. Find the minimum positive value of p+q+r

Open in App
Solution

To find: Minimum positive value of p+q+r

y=cosx+cosx+cosx+....

y=cosx+y

y2y=cosx

Differentiating we get

2yyy=sinx

y(2y1)=sinx

y=sinx2y1

dydx=sinx12y

So p=1,q=1,r=2

So p+q+r=0


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle Sum Property
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon