wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=1sin2x1+sin2x. Prove that dydx+sec2(π4x)=0

Open in App
Solution

y=1sin2x1+sin2x

y=sin2x+cos2x2sinxcosxsin2x+cos2x+2sinxcosx

=(sinxcosxsinx+cosx)2

=|sinxcosx|sinx+cosx=cosxsinxcosx+sinx

dydx=[(cosx+sinx)(sinxcosx)(cosxsinx)(cosx+sinx)(sinx+cosx)2]

=[(cosx+sinx)2+(sinxcosx)2(sinx+cosx)2]

=[cos2x+sin2x+cos2x+sin2x(sinx+cosx)2]

=2(sinx+cosx)2=1(12sinx+12cosx)2

dydx=1(cos(π/4x))2=sec2(π4x)

dydx=sec2(π4x)=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon