If y=√sinx+√sinx+√sinx+...........∞, then show that dydx=cosx2y−1
Open in App
Solution
Given, y=
⎷√sinx+√sinx+√sinx√sinx+√sinx+........∞] Thus, y=√sinx+y Squaring both sides, we get, y2=sinx+y Differentiating both sides, we get 2ydydx=dydx+cosx dydx=cosx(2y−1)