If y=7+7+8+27-7, then the value of y will be
1
√7
8−2√7
√7−1
We have,
y=7+7+8+27-7
⇒y=7+7+7+1+27-7
⇒y=7+7+72+12+2×1×7-7 ∵a2=a
⇒y=7+7+7+12-7 ∵a+b2=a2+b2+2ab
⇒y=7+7+7+1-7
⇒y=27+7+1-7
⇒y=72+12+27-7
⇒y=7+12-7
⇒y=7+1-7
⇒y=1
Therefore, the value of y is 1.
Hence, option (A) is correct.
If y=√√7+7+√8+2√7−√7, then the value of y will be:
If 3x2+4xy+2y2+x−8=0 then the value of dydx at (−1,3) is