wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=x+1x1 , prove that (x21)d2ydx2+xdydx14y=0

Open in App
Solution

y=x+1x1
dydx=12x+112x1
dydx=12(x1x+1x21)
dydx=12(yx21)
x21dydx=12y
Squaring both sides, we get
(x21)(dydx)2=14y2
Differentiating both sides, w.r.t x we get
2(x21)dydxd2ydx2+2x(dydx)2=14×2ydydx
Divide both sides by 2dydx we get
(x21)d2ydx2+xdydx=14y
(x21)d2ydx2+xdydx14y=0 is proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon