wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=tan-1 1+x2+1-x21+ x2-1-x2, find dydx.

Open in App
Solution

Here, y=tan-11+x2+1-x21+x2-1-x2Put x2=cos2θ y=tan-11+cos2θ+1-cos2θ1+cos2θ-1-cos2θ y=tan-12 cos2θ+2 sin2θ2 cos2θ-2 sin2θ y=tan-12cosθ+sinθ2cosθ-sinθ y=tan-1cosθ+sinθcosθcosθ-sinθcosθ Dividing numerator and denominator by cosθ y=tan-1cosθcosθ+sinθcosθcosθcosθ-sinθcosθ y=tan-11+tanθ1-tanθ y=tan-1tanπ4+tanθ1+tanπ4+tanθ y=tan-1tanπ4+θ y=π4+θ y=π4+12cos-1x2 Using x2=cos 2θ

Differentiate it with respect to x,

dydx=0+12-11-x22×2xdydx=-x1-x4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon