If y=tan-11+x2-1-x21+x2+1-x2,then dydxis equal to
x21-x4
x21+x4
x1+x4
x1-x4
Explanation for the correct option:
y=tan-11+x2-1-x21+x2+1-x2
Put x2=cos2θ⇒θ=12cos-1x2
y=tan-11+cos2θ-1-cos2θ1+cos2θ+1-cos2θ=tan-12cos2θ-2sin2θ2cos2θ+2sin2θ=tan-12cosθ-2sinθ2cosθ+2sinθ=tan-12cosθ-sinθ2cosθ+sinθ=tan-1cosθ-sinθcosθ+sinθ
Divide numerator and denominator by cosθ
y=tan-11-tanθ1+tanθ=tan-1tanπ4-tanθtanπ4+tanθ=tan-1tanπ4-θ=π4-θ=π4-12cos-1x2
Now, differentiate with respect to x
dydx=0-12×-11-x4×2x⇒dydx=x1-x4
Hence, Option (D) is the correct answer.