wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=tan1x1+1x2+sin(2tan11x1+x), then find dydx for x(1,1).

Open in App
Solution

y=tan1x1+1x2+sin(2tan11x1+x)
RHS =tan1x1+1x2+sin(2tan11x1+x)
Put x=cos2θ
θ=12cos1x ......(1)
The RHS becomes,
=tan1cos2θ1+1cos22θ+sin(2tan11cos2θ1+cos2θ)
=tan1cos2θ1+sin2θ+sin2tan12sin2θ2cos2θ
=tan1cos2θ1+sin2θ+sin(2tan1tanθ)
=tan1(cos2θsin2θ)(sinθ+cosθ)2+sin2θ
=tan1(cosθsinθ)(sinθ+cosθ)+sin2θ
=tan1(1tanθ)(1+tanθ)+sin2θ
=tan1(tanπ4tanθ)(1+tanπ4tanθ)+sin2θ
=tan1tan(π4θ)+sin2θ
=π4θ+sin2θ
=π412cos1x+1x2
y=π412cos1x+1x2
Now, dydx=121x2x1x2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon