If y=tan−111+x+x2+tan−11x2+3x+3 +tan−11x2+5x+7+⋯+ upto n terms, then
A
y′(0)=−n21+n2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
y′(0)=n21+n2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y′(−n)=n21+n2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
y′(−n)=−n21+n2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cy′(−n)=n21+n2 y=tan−111+x+x2+tan−11x2+3x+3+…+ upto n terms =tan−1(x+1)−x1+x(1+x)+tan−1(x+2)−(x+1)1+(x+1)(x+2)+⋯+ upto n terms =tan−1(x+1)−tan−1x+tan−1(x+2)−tan−1(x+1) +⋯+tan−1(x+n)−tan−1(x+(n−1)) =tan−1(x+n)−tan−1x y′(x)=11+(x+n)2−11+x2 ⇒y′(0)=11+n2−1=−n21+n2 ⇒y′(−n)=1−11+n2=n21+n2