If y=tan−1(11+x+x2)+tan−1(1x2+3x+3)+tan−1(1x2+5x+7)+....+ up to n terms. Then y’(0) is equal to
A
−11+n2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−n21+n2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
n1+n2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
noneofthese
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B−n21+n2 y=tan−1{11+x(1+x)}+tan−1{11+(x+1)(x+2)}+tan−1{11+(x+2)(x+3)}+...+tan−1{11+(x+n−1)(x+n)}=∑nr=1tan−1{11+(x+r−1)(x+r)}=∑nr=1tan−1{(x+r)−(x+r−1)1+(x+r−1)(x−r)}=∑nr=1{tan−1(x+r)−tan−1(x+r−1)}=tan−1(x+n)−tan−1xy′=11+(x+n)2−11+x2⇒y′(0)=11+n2−1=−n21+n2