wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=tan1(1+x2+1x21+x21x2),x21, then find dydx

Open in App
Solution


y=tan1(1+x2+1x21+x21x2)
put x2=cos2θ
=tan1(1+cos2θ+1cos2θ1+cos2θ1cos2θ)

=tan1(2cosθ+2sinθ2cosθ2sinθ)

=tan1(cosθ+sinθcosθsinθ)

=tan1(1+tanθ1tanθ)

y=tan1tan(π4+θ)

y=π4+θ

y=π4+12cos1x2

dydx=1211x4

dydx=x1x4


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon