wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=tan−1(2x1+22x+1), then dydx at x=0 is ________________.

A
110log2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
15log2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
-110log2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
log2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C -110log2
Given y=tan1(2x1+22x+1)

Differentiate w.r.t. x, we get,

dydx=ddx[tan1(2x1+22x+1)]

We know that, ddx[tan1x]=11+x2

dydx=11+(2x1+22x+1)2×ddx[(2x1+22x+1)]

dydx=11+(2x1+22x+1)2×(1+22x+1)ddx(2x)(2x)ddx(1+22x+1)(1+22x+1)2

dydx=11+(2x1+22x+1)2×(1+22x+1)2xlog2(2x)[22x+1log2×ddx(2x+1)](1+22x+1)2

dydx=11+(2x1+22x+1)2×(1+22x+1)2xlog223x+1log2×2(1+22x+1)2

At x=0,

dydx=11+(201+20+1)2×(1+20+1)20log220+1log2×2(1+20+1)2

dydx=11+(11+21)2×(1+21)log221log2×2(1+21)2

dydx=11+(13)2×3log24log2(3)2

dydx=11+19×log29

dydx=1109×log29

dydx=910×log29

dydx=log210

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon