Differentiation of Inverse Trigonometric Functions
If y=tan-12...
Question
If y=tan−1(2x1+22x+1),then dydx at x=0 is ?
A
−15
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
∈2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B−15 ∵y=tan−1(2x1+22x+1)⇒tany=2x1+22x+1⟶(1)⇒(1+22x+1)tany=2xdifferntiatingw.r.tx⇒sec2y(1+22x+1)dydx+2(2x+1)22xtany=x2x−1(ddxa.b=adbdx+bdadx)⇒(tan2y+1)(1+22x+1)dydx+(2x+1)22x+1tany=x2x−1(1+tan2x=sec2x)⇒((2x1+22x+1)+1)(1+22x+1)dydx+(2x+1)22x+1(2x1+22x+1)=x2x−1(from(1))⇒dydx=x2x−1−(2x+1)22x+1(2x1+22x+1)((2x1+22x+1)+1)(1+22x+1)⇒dydxx=0=−15