wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=tan1(5axa26x2), prove that:
dydx=3aa2+9x2+2aa2+4x2.

Open in App
Solution

Given
y=tan1(5axa26x2)
or, y=tan1⎜ ⎜ ⎜5xa16x2a2⎟ ⎟ ⎟ [ Dividing the numerator and the denominator by a2 we get,]
or, y=tan1⎜ ⎜3xa+2xa13xa.2xa⎟ ⎟
or, y=tan13xa+tan12xa
Now differentiating both sides with respect to x we get,
dydx=a2a2+9x2.3a+a2a2+4x2.2a
or, dydx=3aa2+9x2+2aa2+4x2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon