wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=tan1⎢ ⎢ ⎢ ⎢log(ex3)log(ex3)⎥ ⎥ ⎥ ⎥ , then dydx=?

A
31+9(logx)2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
31+9(logx)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3x(1+9(logx)2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3x(1+9(logx)2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 31+9(logx)2
The correct option is C

y=tan1⎢ ⎢ ⎢ ⎢log(ex3)log(ex3)⎥ ⎥ ⎥ ⎥

tany=⎢ ⎢ ⎢ ⎢log(ex3)log(ex3)⎥ ⎥ ⎥ ⎥

tany=[logelogx3loge+logx3]

tany=[13logx1+3logx] - - - - - - (1)

Differentiating both sides with respect to x we get :

sec2ydydx=(1+3logx)ddx(13logx)(13logx)ddx(1+3logx)(1+3logx)2

(1+tan2y)dydx=(1+3logx)(3x)(13logx)(3x)(1+3logx)2

Using (1) we get :

[1+(13logx1+3logx)2]dydx=6x(1+3logx)2

[(1+3logx)2+(13logx)2(1+3logx)2]dydx=6x(1+3logx)2

[2(1+9(logx)2)(1+3logx)2]dydx=6x(1+3logx)2

dydx=6x2(1+9(logx)2)

dydx=3x(1+9(logx)2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon