wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=tan1(1+x2+1x21+x21x2); x21 then find dydx.

Open in App
Solution

Given y=tan1(1+x2+1x21+x21x2)


Put x2=cos2θθ=12cos1x2--- (1)



=tan1(1+cos2θ+1cos2θ1+cos2θ1cos2θ)

tan1(2cosθ+2sinθ2cosθ2sinθ) [ Since, 1+cos2θ=2cos2θ and 1cos2θ=2sin2θ]

tan1(1+tanθ1tanθ)

tan1⎜ ⎜ ⎜ ⎜tan(π4+tanθ)1tan(π4)tanθ⎟ ⎟ ⎟ ⎟

tan1tan(π4+θ)=π4+θ

y=π4+12cos1x2

dydx=012×11x4×2x=x1x4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Method of Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon