If y = tan−1(11+x+x2)+tan−1(1x2+3x+3)+tan−1(1x2+5x+7) + ........+
upto n terms they y' (o) is equal to
y = tan−1{11+x(1+x)}+tan−1{11+(x+1)(x+2)}
+ tan−1{11+(x+2)(x+3)}
+ ........ + tan−1{11+(x+n−1)(x+n)}
= n∑r=1 tan−1{11+(x+r−1)(x+r)}
= n∑r=1 tan−1{(x+r)−(x+r−1)1+(x+r−1)(x+r)}
= n∑r=1 { \( tan^-1 (x+r) - tan^{-1} ( x + r -1 ) }
= tan−1(x+n)−tan−1x
y' = 11+(x+n)2−11+x2
⇒ y'(0) = 11+n2−1=−n21+n2