If y=tan−1(2x1+22x+1), then dydx at x=0 is
−110In 2
Given: y=tan−1(2x1+22x+1)
It can be written as :
y=tan−1(2x+1−2x1+2x.2x+1)
=tan−12x+1−tan−12x [∵tan−1A−tan−1B=tan−1(A−B1+AB)]
Differentiating :
y′=2x+1ln 21+(2x+1)2−2xln 21+22x
⇒y′(0)=−110ln 2