If y=tan-1sinx+cosxcosx-sinx, then dydx is
0
π4
1
12
Explanation for the correct option.
Find the value of dydx.
In the equation y=tan-1sinx+cosxcosx-sinx divide numerator and denominator by cosx and simplify using trigonometric properties.
y=tan-1sinx+cosxcosxcosx-sinxcosx=tan-1tanx+11-tanx=tan-1tanx+tanπ41-tanxtanπ4tanπ4=1=tan-1tanx+π4tanA+B=tanA+tanB1-tanAtanB=x+π4
Now differentiate both sides y=x+π4 with respect to x.
dydx=ddxx+π4=1+0=1
Hence, the correct option is C.
If dx+dy=(x+y)(dx-dy), then log(x+y) is equal to