If y=tan−1√1−sinx1+sinx then the value of dydx at x=π6 is
−12
12
1
-1
1−sinx1+sinx=(cosx2−sinx2)2(cosx2+sinx2)2 cosx2>sinx2 ∴tan−1(√1−sinx1+sinx)=tan−1(cosx2−sinx2cosx2+sinx2)=tan−1(1−tanx21+tanx2) =tan−1(tan(π4−x2)) =π4−x2 = y (dydx) = (−12)