Given y=(tan−1x)2----(1)
Differentiating w.r.t to x, we get
dydx=2tan−1x.11+x2----(2)
or (1+x2)y′=2tan−1x
Again differentiating with w.r.t to x, we get
(1+x2)dy′dx+y′d(1+x2)dx=2.11+x2
⇒(1+x2).y′′+y′.2x=21+x2
⇒(1+x2).2y′′+y′.2x(1+x2)=2
Therefore, ⇒(1+x2).2d2ydx+2x(1+x2)dydx=2