We have,
y=(tan−1x)2
⇒dydx=2(tan−1x)2−1ddx(tan−1x)
⇒dydx=21+x2tan−1x
⇒(1+x2)dydx=2tan−1x
⇒(1+x2)2(dydx)2=4(tan−1x)2 [squaring both side]
⇒(1+x2)2(dydx)2=4y
Differentiating both sides with respect to x, we get
2(1+x2)×2x(dydx)2+2(1+x2)2dydxd2ydx2=4dydx
⇒2x(1+x2)dydx+(1+x2)2d2ydx2=2⇒(1+x2)2y2+2x(1+x2)y1=2