wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=(tan1x)2, then prove that (1+x2)2y2+2x(1+x2)y1=2.

Open in App
Solution

We have,
y=(tan1x)2
dydx=2(tan1x)21ddx(tan1x)
dydx=21+x2tan1x
(1+x2)dydx=2tan1x
(1+x2)2(dydx)2=4(tan1x)2 [squaring both side]
(1+x2)2(dydx)2=4y
Differentiating both sides with respect to x, we get
2(1+x2)×2x(dydx)2+2(1+x2)2dydxd2ydx2=4dydx
2x(1+x2)dydx+(1+x2)2d2ydx2=2(1+x2)2y2+2x(1+x2)y1=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Rate of Change
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon