wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=(tan1x)2 then show (x2+1)2y2+2x(x2+1)y1=2

Open in App
Solution

We have
y=(tan1x)2Differentiatingw.r.t.xdydx=d((tan1x)2)dxdydx=2tan1x.d(tan1x)dxdydx=2tan1x.11+x2Hence,y1=dydx=2tan1x1+x2Againdifferentiatingw.r.t.xddx(dydx)=ddx(2tan1x1+x2)d2ydx2=2ddx(2tan1x1+x2)UsingquotientruleAs,(uv)=uvvuv2Whereu=tan1x&+x2d2ydx2=2⎢ ⎢d(2tan1x)dx.(1+x2)d(1+x2)dx.tan1x(1+x2)2⎥ ⎥d2ydx2=2⎢ ⎢ ⎢ ⎢11+x2.(1+x2)d(1)dx+d(x2)dx.tan1x(1+x2)2⎥ ⎥ ⎥ ⎥d2ydx2=2[1(0+2x)tan1x(1+x2)2]d2ydx2=2[12x.tan1x(1+x2)2]Thus,y2=2[12x.tan1x(1+x2)2]Weneedtoshow(x2+1)2,y2+2x(x2+1)y1=2SolvingLHS(x2+1)2y2+2x(x2+1)y1=(x2+1)2.2[12x.tan1x(1+x2)2]+2x(x2+1).(2tan1x1+x2)=2(12xtan1x)+4xtan1x=24xtan1x+4xtan1x=2Henceproved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon