If y=tanx+cotxtanx-cotx, then dydx=
2tan2xsec2x
tan2xsec2x
-tan2xsec2x
-2tan2xsec2x
Explanation for the correct option.
Step 1. Simplify the given equation.
Using the relation cotx=1tanx, simplify the equation y=tanx+cotxtanx-cotx.
y=tanx+1tanxtanx-1tanx=tan2x+1tan2x-1=1+tan2x-1-tan2x=-1cos2x∵cos2x=1-tan2x1+tan2x=-sec2x
Step 2. Find the value of dydx.
Differentiate both sides of the equation y=-sec2x with respect to x.
dydx=ddx(-sec2x)=-sec2xtan2x×2∵ddxsecx=secxtanx=-2sec2xtan2x
Hence, the correct option is D.