wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=tanx+secx, prove that d2ydx2=cosx(1sinx)2.

Open in App
Solution

Let y=tanx+secx.

To prove: d2ydx2=cosx(1sinx)2

dydx=ddx(tanx+secx)

=sec2x+secxtanx

=1cos2x+1cosxsinxcosx

=1+sinxcos2x

=1+sinx1sin2x

=1+sinx(1+sinx)(1sinx)

dydx=11sinx=1sinx1

d2ydx2=(sinx1)(0)(1)cosx(sinx1)2

=cosx(sinx1)2

d2ydx2=cosx(1sinx)2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon