wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=tan xtan xtan x... , prove that dydx=2 at x=π4

Open in App
Solution

We have, y=tanxtanxtanx... y=tanxy


Taking log on both sides,
log y=logtanxylog y=y log tanx

Differentiating with respect to x using chain rule ,
1ydydx=yddxlog tanx+log tandydx1ydydx=ytanxddxtanx+log tandydxdydx1y-log tanx=ytanxsec2xdydx=ytanxsec2x×y1-ylog tanxNow, dydxx=π4=y sec2π4tanπ4×y1-y log tanπ4dydxx=π4=y22211-y log tan 1dydxx=π4=2121-0 yπ4=tanπ4tanπ4tanπ4...=1 dydxx=π4=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon