1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Log Function
If y=x-1 log ...
Question
If
y
=
x
-
1
log
x
-
1
-
x
+
1
log
x
+
1
, prove that
d
y
d
c
=
log
x
-
1
1
+
x
Open in App
Solution
We
have
,
y
=
x
-
1
log
x
-
1
-
x
+
1
log
x
+
1
Differentiating with respect to x,
d
y
d
x
=
d
d
x
x
-
1
log
x
-
1
-
x
+
1
log
x
+
1
=
x
-
1
d
d
x
log
x
-
1
+
log
x
-
1
d
d
x
x
-
1
-
x
+
1
d
d
x
log
x
+
1
+
log
x
+
1
d
d
x
x
+
1
=
x
-
1
×
1
x
-
1
d
d
x
x
-
1
+
log
x
-
1
×
1
-
x
+
1
×
1
x
+
1
×
d
d
x
x
+
1
+
log
x
+
1
1
=
1
+
log
x
-
1
-
1
+
log
x
+
1
=
log
x
-
1
-
log
x
+
1
=
log
x
-
1
x
+
1
So
,
d
y
d
x
=
log
x
-
1
x
+
1
Suggest Corrections
0
Similar questions
Q.
The solution of the initial value problem e
dy/dx
= x + 1, y(0) = 3 is: