If y=x5(cos(lnx)+sin(lnx)), then the value of (a+b) in the relation x2y2+axy1+by=0 is (y1 and y2 denote the first and second derivative of y with respect to x respectively.)
A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
17
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
8
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
23
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B17 We have y=x5(cos(lnx)+sin(lnx)) dydx=5x4(cos(lnx)+sin(lnx))+x5(−sin(lnx)x+cos(lnx)x) ⇒xy1=5y+x5(cos(lnx)−sin(lnx))
Again differentiating w.r.t. x, xy2+y1=5y1+5x4(cos(lnx)−sin(lnx))+x5(−sin(lnx)x−cos(lnx)x) ⇒x2y2+xy1=5xy1+5x5(cos(lnx)−sin(lnx))−x5(sin(lnx)+cos(lnx)) ⇒x2y2−4xy1=5(xy1−5y)−y ⇒x2y2−4xy1=5xy1−26y ⇒x2y2−9xy1+26y=0
Comparing with x2y2+axy1+by=0, we get a=−9 and b=26
Hence, a+b=17