We have,
y=xcosx+(tanx)cotx
Taking log both side and we get,
logy=log(x)cosx+log(tanx)cotx
logy=cosxlogx+cotxlogtanx
On differentiating with
respect to x and we get,
ddxlogy=cosxddxlogx+logxddxcosx+cotxddxlogtanx+logtanxddxcotx
⇒1ydydx=cosx1x+logx(−sinx)+cotx1tanx(sec2x)+logtanx(−csc2x)
⇒1ydydx=cosxx−sinxlogx−cotxtanxsec2x−csc2xcosxlogtanx
⇒1ydydx=cosxx−csc2x−sinxlogx−csc2xcosxlogtanx
⇒dydx=y[cosxx−csc2x−sinxlogx−csc2xcosxlogtanx]
⇒dydx=xcosx+(tanx)cotx[cosxx−csc2x−sinxlogx−csc2xcosxlogtanx]
Hence, this is the
answer.