wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=xcosx+(tanx)cotx,finddydx

Open in App
Solution

We have,

y=xcosx+(tanx)cotx


Taking log both side and we get,

logy=log(x)cosx+log(tanx)cotx

logy=cosxlogx+cotxlogtanx


On differentiating with respect to x and we get,

ddxlogy=cosxddxlogx+logxddxcosx+cotxddxlogtanx+logtanxddxcotx

1ydydx=cosx1x+logx(sinx)+cotx1tanx(sec2x)+logtanx(csc2x)

1ydydx=cosxxsinxlogxcotxtanxsec2xcsc2xcosxlogtanx

1ydydx=cosxxcsc2xsinxlogxcsc2xcosxlogtanx

dydx=y[cosxxcsc2xsinxlogxcsc2xcosxlogtanx]

dydx=xcosx+(tanx)cotx[cosxxcsc2xsinxlogxcsc2xcosxlogtanx]


Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon