If y=(xcot3x)3/2, then dydx=?
32xcot3x1/2cot3x-3xcot2xcosec2x
32xcot3x1/2cot2x-3xcot2xcosec2x
32xcot3x3/2cot3x-3xcosec2x
None of these
Explanation for the correct option:
Find the first derivative:
We have been given y=(xcot3x)3/2.
Differentiating with respect to x we get,
dydx=32(xcot3x)1/2xddxcot3x+cot3xddxx=32(xcot3x)1/2x3cot2x·-cosec2x+cot3x=32(xcot3x)1/2cot3x-3xcot2xcosec2x
Hence, option (A) is correct.
If |x|<1 and y=1+x+x2+x3+...., then write the value of dydx.