The correct option is A y2x(1−ylogx)
The given function may be written as,
y=xy
Taking log on both sides,
logy=logxy
logy=ylogx
Differentiate w.r. to x
1ydydx=yddx(logx)+logxddxy
1ydydx=yx+logx.dydx
1ydydx−logx.dydx=yx
dydx(1y−logx)=yx
dydx(1−ylogxy)=yx
∴dydx=y2x(1−ylogx)