If y(x) is a solution of (2+sinx1+y)dydx=−cosx and y(0)=1,then find the value of y(π2).
Given that, (2+sinx1+y)dydx=−cosx⇒dy1+y=−cosx2+sinxdx
On integarting both sides, we get
∫11+ydy=−∫cosx2+sinxdx⇒log(1+y)=−log(2+sinx)+logC
⇒log(1+y)+log(2+sinx)=logC⇒log[(1+y)(2+sinx)]=logC⇒(1+y)(2+sinx)=C⇒1+y=C2+sinx⇒y=C2+sinx−1 ...(i)
When x=0 and y=1, then
1=C2−1⇒C=4
On putting C=4 in Eq. (i), we get
y=42+sinx−1y(π2)=42+sinπ2−1=42+1−1 =43−1=13