If y(x) is a solution of the differential equation (1+sinx1+y)dydx=−cosx and y(0)=1, then find the value of y(π2).
Open in App
Solution
(1+sinx1+y)dydx=−cosx dydx=−(1+y)cosx(1+sinx) ⇒dy(1+y)=−cosx(1+sinx)dx Integrating both sides, Put 1+sinx=t ⇒cosxdx=dt log|1+y|=∫−dtt ⇒log|1+y|=−log|1+sinx|+logC ⇒log(1+y)(1+sinx)=logC ⇒C=(1+y)(1+sinx) Given y(0)=1 ⇒C=2 So, 2=(1+y)(1+sinx) ⇒y(π2)=0