If y(x) is the solution of the differential equation dydx+(2x+1x)y=e−2x,x>0, where y(1)=12e−2, then:
A
y(loge2)=loge24
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
y(loge2)=loge4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y(x) is decreasing in (0,1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
y(x) is decreasing in (12,1)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dy(x) is decreasing in (12,1) dydx+(2x+1x)y=e−2x,x>0 I.F.=e∫(2xx+1x)dx=xe2x
∴y×xe2x=∫xdx ⇒y×xe2x=x22+c
Since y(1)=12e−2, ⇒12e−2×e2=12+c⇒c=0 ∴y=xe−2x2 ⇒y(loge2)=(loge2)e−2loge22=loge28 dydx=12e−2x(−2x+1) ⇒y(x) is decreasing in (12,1)