If y=xxx....∞,, then dydx is equal to
yxy−1
y2x(1−ylogx)
yx1+ylogx
None of these
Explanation for the correct option:
Finding the value of dydx:
The given differential equation is y=xxx....∞
Let y=xx....∞,then
y=xy
Taking log on both sides,
logy=ylogx
Differentiate the above equation with respect to x.
1ydydx=y1x+logxdydx[∵ddx(logx)=1x,d(a·b)dx=adbdx+bdadx]⇒dydx1y−logx=yx⇒dydx1y−logxy=yx⇒dydx=y2x1−ylogx
Hence, the correct option is(B).
Fill in the blanks :
If x,y,z are three integer, then(x+y)+(___)=(____)+(____)