If y=x+1+x2n,then 1+x2d2ydx2+xdydx is
n2y
-n2y
-y
2x2y
Finding the value of 1+x2d2ydx2+xdydx:
The given differential equation is y=x+1+x2n
Differentiate the above equation with respect to x
dydx=nx+1+x2n−1×ddxx+1+x2[∵dxndx=nxn-1]⇒dydx=nx+1+x2n−1×1+2x21+x2⇒dydx=nx+1+x2n−1×x+1+x21+x2⇒dydx=nx+1+x2n1+x2⇒dydx=ny1+x2⇒1+x2dydx=ny
When both sides are squared, the result is
1+x2dydx2=n2y2
Differentiate the above equation with respect to x.
1+x2×2dydx×d2ydx2+dydx2×2x=2n2ydydx[∵da·bdx=addxb+bddxa,dxndx=nxn-1]⇒2dydx1+x2d2ydx2+xdydx=2n2ydydx⇒1+x2d2ydx2+xdydx=n2y
Hence, the correct option is A.