The correct option is C y(x) strictly increases in interval (π6,π3)
dydx=sin2x+3ycotx
⇒dydx−3ycotx=sin2x
which is linear differential equation.
I.F.=e−∫3(cotx)dx=e−3ln(sinx)=1sin3x
Now, the general solution is
y(1sin3x)=∫2sinx⋅cosxsin3xdx+C
⇒y(1sin3x)=2∫cosec xcotx dx+C
⇒y(1sin3x)=−2 cosec x+C
Since y(π2)=2, therefore C=4
∴y=4sin3x−2sin2x
y(π6)=4(12)3−2(12)2
⇒y(π6)=12−12=0
y′(x)=12sin2xcosx−4sinxcosx
⇒y′(π3)=92−2√32=(9−2√32)
We have, y′(x)=4sinxcosx(3sinx−1)
⇒y′(x)=2sin2x(3sinx−1)
∴y′(x)>0 for interval (π6,π3)
Hence, y(x) strictly increases in interval (π6,π3)
π/2∫−π/2(4sin3x−2sin2x)dx
=0−4π/2∫0sin2xdx
=−2π/2∫0(1−cos2x)dx
=−2[x−sin2x2]π/20=−π