If y(x) satisfies the differential equation dydx=sin 2x+3y cot x and y(π2)=2, then which of the following statement(s) is/are correct?
y(π6)=0
y(x) increases in interval (π6,π3)
dydx−3y cot x=sin 2x
⇒I.F.=e−∫3cot x dx=e−3 ln(sin x)=1sin3x
∴ General solution
∴ysin3x=∫2 sin x cos xsin3xdx+C
=ysin3x=−2 cosecx+C ......(i)
⇒y(π2)=2 (given)
⇒ Putting the above value in (i), we get 2(1)3=−2+C⇒C=4
∴y=4sin3x−2sin2x
⇒y(π6)=0
⇒y′(x)=12sin2x cos x−4sin x cos x
=y′(π3)=9−2√32
⇒y′(x)=2sin 2x(3sinx−1)
y′(x)=0⇒x=0 or x=π2 or x=sin−1(13)<π6
∴y(x) increases in (π6,π3)
⇒∫π2−π2(4 sin3x−2sin2x)dx=0−4∫π20sin2xdx=−π